Transcriptome Analyses Reveal the Involvement of Both C and N Termini of Cryptochrome 1 in Its Regulation of Phytohormone-Responsive Gene Expression in Arabidopsis
نویسندگان
چکیده
Cryptochromes (CRY) are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2) C termini (CCT1 and CCT2) mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1) has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inhibition of gibberellin acids (GA)/brassinosteroids (BR)/auxin-responsive gene expression. Here, we performed RNA-Seq assay using transgenic plants expressing CCT1 fused to β-glucuronidase (GUS-CCT1, abbreviated as CCT1), which exhibit a constitutively photomorphogenic phenotype, and compared the results with those obtained previously from cry1cry2 mutant and the transgenic plants expressing CNT1 fused to nuclear localization signal sequence (NLS)-tagged YFP (CNT1-NLS-YFP, abbreviated as CNT1), which display enhanced responsiveness to blue light. We found that 2903 (67.85%) of the CRY-regulated genes are regulated by CCT1 and that 1095 of these CCT1-regulated genes are also regulated by CNT1. After annotating the gene functions, we found that CCT1 is involved in mediating CRY1 regulation of phytohormone-responsive genes, like CNT1, and that about half of the up-regulated genes by GA/BR/auxin are down-regulated by CCT1 and CNT1, consistent with the antagonistic role for CRY1 and these phytohormones in regulating hypocotyl elongation. Physiological studies showed that both CCT1 and CNT1 are likely involved in mediating CRY1 reduction of seedlings sensitivity to GA under blue light. Furthermore, protein expression studies demonstrate that the inhibition of GA promotion of HY5 degradation by CRY1 is likely mediated by CCT1, but not by CNT1. These results give genome-wide transcriptome information concerning the signaling mechanism of CRY1, unraveling possible involvement of its C and N termini in its regulation of response of GA and likely other phytohormones.
منابع مشابه
Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملDifferential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملMicroarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment
Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...
متن کاملHUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis.
Light regulates growth and developmental processes in plants via global transcriptome adjustment, translational control, and multilayered posttranslational modification of proteins. The transcriptional activation and repression of light-responsive genes has been well documented; however, the impact of posttranscriptional regulation on conveying light signals has been less addressed. Here, we ex...
متن کامل